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Introduction
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Radars

O Function: Radars sense
angle, range and
velocity of (moving)
scatterers in the
environment [1-4].

FMCW radar: FM ranging

O Range:
O Velocity:
dR

Pulse-Doppler radar:
pulse-delay ranging

O Range:
R = c%
O Velocity:
v = fD2>\0

O Blind zone:
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Figure 1: (a) A monostatic frequency modulated continuous wave (FMCW)
radar. (b) A monostatic monopulse-Doppler radar based on an RF beamforming
active electronically scanned array.

EuCAP 2011 Short Course on Electronically Scanned Reflectarrays, Rome, Italy Real-Beam Radar — 4 / 29



Radar Antennas

g

Function: direction of arrival (DOA) sensing
through field of view sampling with a directive
antenna [5-9]

Mechanically scanned antenna (M-Scan radar)
— Advantages:
> Cooling: no need for aperture cooling
> Cost

> Scan volume (gimbal), wide field of view

— Advantages:

> Scan rate

> Scan volume (focal plane scanning [10]),
limited field of view due to comatic
aberration

> Size, weight and wind resistance (Meshed
reflectors have lower weight and wind
resistance, but higher surface losses.)
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Figure 2: (a) M-Scan radar (gimbal) (b) M-Scan radar
(focal plane scanning).
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Radar Antennas

g

Function: direction of arrival (DOA) sensing
through field of view sampling with a directive
antenna [5-9]

Electronically scanned array (E-Scan radar)

— Advantages:

>

Digitization-enabled (ABF, STAP)
multiple simultaneous modes: air-to-air
(search), air-to-surface (GMTE, GMTI),
EW (ECCM, ECM, ESM), ...

Inertialess and instantaneous scanning:
lightweight platforms, short reaction times
and more time-on-target during search
mode, ...

EIRP x G, /T: high Tx power, low Rx
sidelobe levels

Multiple simultaneous Rx channels:
multi-target tracking (AESA), monopulse
tracking, SLB, ...

RCS reduction

Reliability: graceful degradation due to use
of solid-state power amplification (AESA)

ELECTRONICALLY IEW
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Figure 3: An electronically scanned array.
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High-Precision Direction-of-Arrival Sensing

The monopulse technique:

Function: Four-quadrant monopulse comparators are the proverbial cross hairs of a tracking radar. They

0
increase the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a
single pulse and which are received in three concurrent and spatially-orthogonal channels, being the sum
channel, X, the azimuth-difference channel, A 4~, and the elevation-difference channel, Ag;. A
four-quadrant monopulse comparator can be readily implemented by illuminating an electronically scanned
reflectarray with a monopulse feed horn [1-5].
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Figure 4: A four-horn square feed, connected to Figure 5: The monopulse error: e = k ﬁiﬁ ‘1 which

waveguide monopulse feed network. _ o _
k is the AGC factor, which is used to normalize e.
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High-Precision Direction-of-Arrival Sensing

The monopulse technique:

O Function: Four-quadrant monopulse comparators are the proverbial cross hairs of a tracking radar. They
increase the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a
single pulse and which are received in three concurrent and spatially-orthogonal channels, being the sum
channel, X, the azimuth-difference channel, A 4~, and the elevation-difference channel, Ag;. A
four-quadrant monopulse comparator can be readily implemented by illuminating an electronically scanned
reflectarray with a monopulse feed horn [1-5].

E-PLANE i
CIRCULATOR
\c

MODE 1: TE4q —
MODE 2: TEpq —
MODE 3: TE3q —
AgL
¢ T = A7
AgL
I 3
D +} ]
Figure 7: Five-horn feed with coupling to both linear-
polarization components, which are combined by the
switch matrix to select horizontal, vertical, or circular
Figure 6: A four-horn triple-mode feed [1, 2]. polarization [5].
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High-Precision Direction-of-Arrival Sensing: References
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RF Beamforming Passive Subarrays
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Passive Subarrays

O Function: Adding 2-D electronic scanning to 1-D

RF beamforming AESA (or PESA) [1-4] CONTINUOUS TRANSVERSE STUB

O Advantages:

— Cost: lower compared to AESA solution

— Size: feasible at Ka-band (A\g/2 @ 35 GHz =
4.3 mm)

Ad

Figure 8: Stick-assembled continuous transverse stub
fed by a passive subarray [1].
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Passive Subarrays

O Function: Adding 2-D electronic scanning to 1-D
RF beamforming AESA (or PESA) [1-4]

O Disadvantages:
- EIRP, EIRP x G, /T:

> lower compared to AESA solution

> f(N, Oprax), in which N is the # of
antennas per passive subarray and

+057 4 x is the field of view
A 38 GHz example is given; assume:

m  Aperture coupled microstrip antennas: n= 90%

m  Distributed loaded-line RF MEMS TTD phase
shifters: 6.75 ps/dB, Pps 4 x = 500 mW

m  Wilkinson power dividers: IL = 0.3 dB
NOPT =38 (QMAX = 340): EIRP =40 W

(sufficient for Tx-only array), G,-/T = 0.036 1/K
(insufficient for Rx-only and T/R array)

NANTENNAS = 4 EIRP =20 W

EIRP x G¢/T = 0.85 W/K

'
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Figure 9: EIRP, EIRP x G, /T of RF MEMS passive
subarray
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Passive Subarrays

O Function: Adding 2-D electronic scanning to 1-D
RF beamforming AESA (or PESA) [1-4]
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O Disadvantages:

- EIRP, EIRP x G, /T:

Figure 10: EIRP of RF MEMS passive subarray

> lower compared to AESA solution

> f(N, Oarax), in which N is the # of

antennas per passive subarray and 1.2
+0psr 4 x is the field of view g !
A 38 GHz example is given; assume: E 0.8
G 06
m  Aperture coupled microstrip antennas: n= 90% é 0.4
w
m Distributed loaded-line RF MEMS TTD phase 02
shifters: 6.75 ps/dB, Ppr A x = 500 mW 0 0 s 10 15 20 2 a0
m  Wilkinson power dividers: IL = 0.3 dB Nasrenas
_ _ 240). _ . .
Nopr =8 (0max =347): EIRP =40 W Figure 11: EIRP x G, /T of RF MEMS passive subar-

(sufficient for Tx-only array), G,-/T = 0.036 1/K
(insufficient for Rx-only and T/R array)
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Passive Subarrays: Examples
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Figure 12: Tikhomirov NIIP's X-band Irbis-E radar is
a multi-mode hybrid electronically scanned array radar
developed for the Sukhoi 35BM fighter aircraft (West-
ern countries all but use AESA nose-cone radars).

Figure 13: Tikhomirov NIIP's X-band Irbis-E radar.
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Passive Subarrays: References
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RF Beamforming PESA Subsystems
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Wideband Brick Assembled Lens Arrays

t

Principle of Operation: A lens array captures an
unbounded wave, (TTD) phase shifts and
reradiates the guided wave [1-4].

Advantages:
— Bandwidth: TTD-capable

— Beam pointing error (3b < P < 4b)
— Monopulse-capable
— No feed blockage, protrusion (Cassegrain)

—  Polarimetric

Disadvantages:

— Beam steering controller on the outside
— Size and weight (brick assembly)

— Spill-over loss (Tx) and noise (Rx)

Examples:

- Radant [3]

&

AEL Apz

z
[+[+] 1] [+

Figure 14: An UWB lens array is illuminated by a four-
quadrant monopulse horn.

Figure 15: A differential UWB lens array brick
(DETSA - slotline RF MEMS TTD phase shifter —
DETSA)
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Wideband Brick Assembled Lens Arrays

O Principle of Operation: A lens array captures an
unbounded wave, (TTD) phase shifts and
reradiates the guided wave [1-4].

O Advantages:
— Bandwidth: TTD-capable

— Beam pointing error (3b < P < 4b)
— Monopulse-capable
— No feed blockage, protrusion (Cassegrain)

—  Polarimetric

O Disadvantages:

— Beam steering controller on the outside

— Size and weight (brick assembly)

— Spill-over loss (Tx) and noise (Rx)

O Examples:
Figure 16: Radant’'s X-Band RF MEMS electronically

- Radant [3] scanned lens array has a 0.4 square meter aperture
area. It contains 25,000 RF MEMS switches [3].
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Wideband Brick Assembled Lens Arrays: Patents
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Wideband Brick Assembled Lens Arrays: References
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Resonant Tile Assembled Reflectarrays

O Principle of operation: A tunable impedance

surface reflects an unbounded wave in a desired

direction by tuning the surface impedance
(reactance) of unit cells in order to obtain a

linear reflection phase shift progression over the

surface [1-6].

O Advantages:

Beam steering controller on the backside

EIRP x G, /T: higher than for a
brick-assembled lens or reflectarray

Monopulse-capable

Size and weight (tile-assembly)

O Disadvantages:

Bandwidth: resonant
Beam pointing error (1b < P < 2b)
Feed blocking, protrusion (Cassegrain)

(Single Polarized)

Spill-over loss (Tx) and noise (Rx)

(a) TILE-ASSEMBLY

{

Apz  AeL Z

] 1] [+

Figure 17: (a) tile-assembled resonant RF MEMS tun-
able impedance surface
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Resonant Tile Assembled Reflectarrays: Patents
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A. DORNE ETAL

3,276,023

GRID ARRAY ANTENNA

Filed May 21, 1963

it&%\%jfﬁ?ﬁd@‘“—‘r’ :

flab  1tbe 2 flab 1/-bc

4 Sheets—Sheet 1

c-n
a b <
w1 [1-k

|
1
{ T
1 i
—r—y s
ez | 4 i
: = : ~ i T <—$—> ‘;
| i 5
: | /4 b
Lo bl
[ ol
(. /0 ol
| —m—— | :
|t :
A e T e e B bt
TR TR
VR J
INCIDENT £AYS
ser i SETE | SE7 3 3 SET 4
1 1 1
54 = e e — ——
i% o1 I o2 ! lro-3 j o2
] |
557 Y )¢ ﬁsl g e e =
i i !
5C e T T T =t i e
| ! |
I N (i |
50577777 Z 7
PLANE REFLECTOR
20 /
; R 5C
i i
1 i
| i
| | 58
| /4 | INVENTORS
! oA ABTHUR — DOBNE
i | BOBERT MALECH
L = BY WALTER SATEEJTR.

]
; A ;%RNEYS

12)

United States Patent

Sievenpiper et al.

(10) Patent No.:
(45) Date of Patent:

US 7,245,269 B2
Jul. 17,2007

(54)

%)

(73)

(60)

(51

(52)
(58)

ADAPTIVE BEAM FORMING ANTENNA
SYST! USING A TUNABLE IMPEDANCE
SURFACE

Inventors: Daniel F. Sievenpiper, Santa Monica,
CA (US); James H. Schaffner,
Chatsworth, CA (US); Gregory L.
Tangonan, Oxnard, CA (US)

Assignee: HRL Laboratories, LLC, Malibu, CA
(Us)
Notice:  Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 10/844,104
Filed:  May 11, 2004

Prior Publication Data

US 2004/0263408 A1 Dec. 30, 2004

Related U.S. Application Data

Provisional application No. 60/470,029, filed on May
12, 2003.

Int. CL

HOIQ 15/02 (2006.01)

HOIQ 15/24 (2006.01)

HOIQ 1738 (2006.01)

U.s. CL 343/909; 343/700 MS

Field of Classification Search 343/700 MS,
343/745,749. 756. 909, 910

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4051477 A 9/1977 Murphy et al 343/700 MS
4,119,972 A 10/1978 Fletcher et al 343/844
4123759 A 10/1978 Tlines ct al.

4124852 A 111978 Sreudel ...

4.127,586 A 11/1978 Rody ct al.

4.150382 A 4/1979 King

4173759 A 11/1979 Bakhru

4.189,733 A 2/1980 Malm .

4.217,587 A 8/1980 Jacomini

(Conrinued)
TORECIGN PATONT DOCUMENTS

DE 196 00 609 Al 4/1997

(Continued)
OTHER PUBLICATIONS
U.S. Appl. No. 10/944.032, Sep. 17, 2004, Sievenpiper
(Continued)

Primary Fxaminer—Shih-Chao Chen
(74) Attorney, Agent, or Firm—I.adas & Parry

(57) ABSTRACT

A method of and apparatus for beam steering. A feed horn
is arranged so that the feed horn illuminates a tunable
impedance surface comprising a plurality of individually
tunable resonator cells. each resonator element having a
reactance tunable by a tuning element associated therewith.
The tuning elements associated with the tunable impedance
surface are adjusted so that the resonances of the individu-
ally tunable resonator cells are varied in a sequence and the
of the individually tunable resonator cells are set

3.267.480 A 8/1966 Lerner 343911

3.560,978 A 2/1971 Himmel et al. .
3.810,183 A 5/1974 Krutsinger et al.
3961333 A 6/1976 Purinton ...
4,045,800 A 8/1977 Tang et al

1o values which improve transmission of information via the
tunable impedance surface and the feed horn.

24 Claims, 9 Drawing Sheets

EuCAP 2011 Short Course on Electronically Scanned Reflectarrays, Rome, Italy

Real-Beam Radar — 19 / 29



Resonant Tile Assembled Reflectarrays: Examples

X-BAND GAIN = 34 dB

DIAMETER 1.05 m

RADOME

LEGACY N-001 ANTENNA

Figure 18: Tikhomirov NIIP's low-weight X-band

Pero electronically scanned reflectarray for a Sukhoi

30 fighter aircraft nose-cone radar upgrade (Western

countries all but use AESA nose-cone radars). Figure 19: Tikhomirov NIIP's low-weight X-band Pero
electronically scanned reflectarray.
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Resonant Tile Assembled Reflectarrays: Opportunities

HALF-WAVE-PLATE MIRROR, WHICH
ROTATES THE POLARIZATION OF REFLECTED ENERGY

PARABOLOID MADE OF A GRID OF PARALLEL WIRES,
WHICH FOCUSES ENERGY TO AND FROM THE FEED AND
IS TRANSPARENT TO CROSS-POLARIZED ENERGY

\ M4

!

ARRIVING E -FIELD ‘ \/

AND COMPONENTS
TOTAL COMPONENTS

REFLECTS FROM
REFLECTED E-FIELD GRID SURFACE
(REFERENCED TO GRID SURFACE  _ __ _

TOTAL

REFLECTS FROM
GROUND PLANE
SHIFTED 180°

Figure 20: E-Scan radar upgrade for resonant-fed slot- SECHUSE OF _
ted waveguide based M-Scan radars. Shown: Moscow

Agat Research Institute X-band 9B-1103M monopulse-
Doppler radar active homing head for the Vympel R-77
(RVV-AE) air-to-air missile.

Figure 21: E-Scan radar upgrade for inverse Cassegrain
dual reflector antenna based M-Scan radars. Picture
recovered from [7].
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Wideband Brick Assembled Reflectarrays

O Principle of operation: Brick-assembled

reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)

phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8—14].

O Advantages:

Bandwidth: TTD-capable

Beam pointing error (3b < P < 4b)
Beam steering controller on the backside
Monopulse-capable

Polarimetric

O Disadvantages:

EIRP x G, /T: Lower than for a tunable
impedance surface, higher than for a lens

Feed blocking, protrusion (Cassegrain)
Size and weight (brick assembly)

Spill-over loss (Tx) and noise (Rx)

(a) TILE-ASSEMBLY (b) BRICK-ASSEMBLY _ EJIS - ?C_)V_Vl:l
F T W | ’\W —W |
[T -+
1R
l l l l CELL

Apz - AeL

z
5 £ B
L] [

Figure 22: (a) tile-assembled resonant RF MEMS
tunable impedance surface, (b) brick-assembled ultra
wideband RF MEMS reflectarray, (inset) differential
RF MEMS slotline TTD reflection phase shifter.
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Wideband Brick Assembled Reflectarrays

O Principle of operation: Brick-assembled
reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)
phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8—14].

O Advantages:
— Bandwidth: TTD-capable

—  Beam pointing error (3b < P < 4b)

— Beam steering controller on the backside

— Monopulse-capable
— Polarimetric =

O Disadvantages: Figure 23: Artist impression of an RF MEMS reflec-
tarray brick with 3:1 bandwidth.

— EIRP x G, /T: Lower than for a tunable
impedance surface, higher than for a lens

— Feed blocking, protrusion (Cassegrain)

— Size and weight (brick assembly)

— Spill-over loss (Tx) and noise (Rx)
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Wideband Brick Assembled Reflectarrays

O Principle of operation: Brick-assembled
reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)
phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8—14].

O Advantages:
— Bandwidth: TTD-capable

—  Beam pointing error (3b < P < 4b)
— Beam steering controller on the backside
— Monopulse-capable

—  Polarimetric

O Disadvantages:

— EIRP x G, /T: Lower than for a tunable
impedance surface, higher than for a lens

— Feed blocking, protrusion (Cassegrain)
— Size and weight (brick assembly)

— Spill-over loss (Tx) and noise (Rx)

Figure 24: Artist impression of a differential slot-
line TTD reflection phase shifter based on Radant
RMSW200 SPST RF MEMS switches.
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Wideband Brick Assembled Reflectarrays: Patents
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Switched Beamformers

t

Principle of operation: It is a cascade of a single
pole N throw (SPNT) switch and a beamformer
(beamforming matrix or lens or reflector based

focal plane scanner [1-4]).

Advantages:

— Bandwidth: TTD-capable, if based on focal
plane scanner (parabolic reflector, Luneburg
or Rotman lens)

O Disadvantages:

— Bandwidth: coupler limited, if based on
beamforming matrix (Blass, Butler, Nolen)

— Beam pointing error: high, B beam positions
versus 2271 beam positions for (TTD)
phase shifter based ESA

— EIRP x G, /T: Pr limited by linearity and
cold-switched power handling of SPNT
switch. G lowered by insertion loss (IL) of
SPNT switch and beamformer.

—  Field of view: related to f/D (IL, size)

— Not monopulse-capable

(@)

RF MEMS
SP4T SWITCH

(b)

BEAM PORTS (B

(3 FOCAL®
POINTS)

PARABOLIC
REFLECTOR
(1 FOCAL POINT)

h \‘: =10
F e\

>
@
S— .
§> 5 o/2
Y

RF MEMS

SP4T SWITCH

\

ARRAY PORTS (A)

Figure 25: Switched beamformers based on an RF
MEMS single pole 4 throw (SP4T) switch and a focal
plane scanner: (a) the Rotman lens based focal plane
scanner, (b) parabolic reflector based focal plane scan-

ner.
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Switched Beamformers

O Principle of operation: It is a cascade of a single
pole N throw (SPNT) switch and a beamformer
(beamforming matrix or lens or reflector based
focal plane scanner [1-4]).

O Advantages:

— Bandwidth: TTD-capable, if based on focal
plane scanner (parabolic reflector, Luneburg
or Rotman lens)

O Disadvantages:

— Bandwidth: coupler limited, if based on
beamforming matrix (Blass, Butler, Nolen)

— Beam pointing error: high, B beam positions
versus 2271 beam positions for (TTD)
phase shifter based ESA

— EIRP x G, /T: Pr limited by linearity and
cold-switched power handling of SPNT
switch. G lowered by insertion loss (IL) of

SPNT switch and beamformer. Figure 26: KNIRTI's Sorbtsiya H/I-band radar jam-

—  Field of view: related to f/D (IL, size) ming ECM pod for the Sukhoi 34 fighter aircraft fea-
tures a Luneburg lens based focal plane scanner.

— Not monopulse-capable
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Radomes
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RF MEMS Radomes

O Primary function: Protection of ESA against
adverse environmental conditions

O Secondary functions:

Calibration [1]

(Tunable) Frequency selective surface

(FSS) [2]
Limiter
(Reconfigurable) Polarization transformer [3]

Shutter (RCS control) [4]

Figure 27: Radome [5] (Photo of APAR radome,
Thales, Hengelo, The Netherlands)
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