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� Function: Radars sense
angle, range and
velocity of (moving)
scatterers in the
environment [1–4].

FMCW radar: FM ranging
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pulse-delay ranging
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Figure 1: (a) A monostatic frequency modulated continuous wave (FMCW)
radar. (b) A monostatic monopulse-Doppler radar based on an RF beamforming
active electronically scanned array.
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� Function: direction of arrival (DOA) sensing
through field of view sampling with a directive
antenna [5–9]

� Mechanically scanned antenna (M-Scan radar)

– Advantages:

⊲ Cooling: no need for aperture cooling

⊲ Cost

⊲ Scan volume (gimbal), wide field of view

– Advantages:

⊲ Scan rate

⊲ Scan volume (focal plane scanning [10]),
limited field of view due to comatic
aberration

⊲ Size, weight and wind resistance (Meshed
reflectors have lower weight and wind
resistance, but higher surface losses.)
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Figure 2: (a) M-Scan radar (gimbal) (b) M-Scan radar
(focal plane scanning).
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� Function: direction of arrival (DOA) sensing
through field of view sampling with a directive
antenna [5–9]

� Electronically scanned array (E-Scan radar)

– Advantages:

⊲ Digitization-enabled (ABF, STAP)
multiple simultaneous modes: air-to-air
(search), air-to-surface (GMTE, GMTI),
EW (ECCM, ECM, ESM), ...

⊲ Inertialess and instantaneous scanning:
lightweight platforms, short reaction times
and more time-on-target during search
mode, ...

⊲ EIRP × Gr/T : high Tx power, low Rx
sidelobe levels

⊲ Multiple simultaneous Rx channels:
multi-target tracking (AESA), monopulse
tracking, SLB, ...

⊲ RCS reduction

⊲ Reliability: graceful degradation due to use
of solid-state power amplification (AESA)

d

EIRP x Gr/T

FIELD OF VIEWELECTRONICALLY

SCANNED

ARRAY

1/BW

BEAM POINTING

ERROR

TARGET

- ANGLE

- RANGE

- VELOCITYHALF POWER

BEAMWIDTH

PULSE-DELAY RANGING

SIDELOBE

LEVEL

POLARIZATION

Figure 3: An electronically scanned array.
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The monopulse technique:

� Function: Four-quadrant monopulse comparators are the proverbial cross hairs of a tracking radar. They
increase the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a
single pulse and which are received in three concurrent and spatially-orthogonal channels, being the sum
channel, Σ, the azimuth-difference channel, ∆AZ , and the elevation-difference channel, ∆EL. A
four-quadrant monopulse comparator can be readily implemented by illuminating an electronically scanned
reflectarray with a monopulse feed horn [1–5].
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The monopulse technique:

� Function: Four-quadrant monopulse comparators are the proverbial cross hairs of a tracking radar. They
increase the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a
single pulse and which are received in three concurrent and spatially-orthogonal channels, being the sum
channel, Σ, the azimuth-difference channel, ∆AZ , and the elevation-difference channel, ∆EL. A
four-quadrant monopulse comparator can be readily implemented by illuminating an electronically scanned
reflectarray with a monopulse feed horn [1–5].
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� Function: Adding 2-D electronic scanning to 1-D
RF beamforming AESA (or PESA) [1–4]

� Advantages:

– Cost: lower compared to AESA solution

– Size: feasible at Ka-band (λ0/2 @ 35 GHz =
4.3 mm)

� Disadvantages:

– EIRP, EIRP × Gr/T :

⊲ lower compared to AESA solution

⊲ f(N, θMAX), in which N is the # of
antennas per passive subarray and
±θMAX is the field of view
A 38 GHz example is given; assume:

■ Aperture coupled microstrip antennas: η= 90%

■ Distributed loaded-line RF MEMS TTD phase
shifters: 6.75 ps/dB, PMAX = 500 mW

■ Wilkinson power dividers: IL = 0.3 dB

NOPT = 8 (θMAX = 34◦): EIRP = 40 W

(sufficient for Tx-only array), Gr/T = 0.036 1/K

(insufficient for Rx-only and T/R array)
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Figure 8: Stick-assembled continuous transverse stub
fed by a passive subarray [1].
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Figure 12: Tikhomirov NIIP’s X-band Irbis-E radar is
a multi-mode hybrid electronically scanned array radar
developed for the Sukhoi 35BM fighter aircraft (West-
ern countries all but use AESA nose-cone radars).

Figure 13: Tikhomirov NIIP’s X-band Irbis-E radar.
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� Principle of Operation: A lens array captures an
unbounded wave, (TTD) phase shifts and
reradiates the guided wave [1–4].

� Advantages:

– Bandwidth: TTD-capable

– Beam pointing error (3b < P̃ < 4b)

– Monopulse-capable

– No feed blockage, protrusion (Cassegrain)

– Polarimetric

� Disadvantages:

– Beam steering controller on the outside

– Size and weight (brick assembly)

– Spill-over loss (Tx) and noise (Rx)

� Examples:

– Radant [3]
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Figure 14: An UWB lens array is illuminated by a four-
quadrant monopulse horn.

Figure 15: A differential UWB lens array brick
(DETSA – slotline RF MEMS TTD phase shifter –
DETSA)
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� Principle of Operation: A lens array captures an
unbounded wave, (TTD) phase shifts and
reradiates the guided wave [1–4].

� Advantages:

– Bandwidth: TTD-capable

– Beam pointing error (3b < P̃ < 4b)

– Monopulse-capable

– No feed blockage, protrusion (Cassegrain)

– Polarimetric

� Disadvantages:

– Beam steering controller on the outside

– Size and weight (brick assembly)

– Spill-over loss (Tx) and noise (Rx)

� Examples:

– Radant [3]
Figure 16: Radant’s X-Band RF MEMS electronically
scanned lens array has a 0.4 square meter aperture
area. It contains 25,000 RF MEMS switches [3].
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� Principle of operation: A tunable impedance
surface reflects an unbounded wave in a desired
direction by tuning the surface impedance
(reactance) of unit cells in order to obtain a
linear reflection phase shift progression over the
surface [1–6].

� Advantages:

– Beam steering controller on the backside

– EIRP × Gr/T : higher than for a
brick-assembled lens or reflectarray

– Monopulse-capable

– Size and weight (tile-assembly)

� Disadvantages:

– Bandwidth: resonant

– Beam pointing error (1b < P̃ < 2b)

– Feed blocking, protrusion (Cassegrain)

– (Single Polarized)

– Spill-over loss (Tx) and noise (Rx)
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Figure 20: E-Scan radar upgrade for resonant-fed slot-
ted waveguide based M-Scan radars. Shown: Moscow
Agat Research Institute X-band 9B-1103Mmonopulse-
Doppler radar active homing head for the Vympel R-77
(RVV-AE) air-to-air missile.

Figure 21: E-Scan radar upgrade for inverse Cassegrain
dual reflector antenna based M-Scan radars. Picture
recovered from [7].
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� Principle of operation: Brick-assembled
reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)
phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8–14].

� Advantages:

– Bandwidth: TTD-capable

– Beam pointing error (3b < P̃ < 4b)

– Beam steering controller on the backside

– Monopulse-capable

– Polarimetric

� Disadvantages:

– EIRP × Gr/T : Lower than for a tunable
impedance surface, higher than for a lens

– Feed blocking, protrusion (Cassegrain)

– Size and weight (brick assembly)

– Spill-over loss (Tx) and noise (Rx)

++
++

+++
+ --

-
-

Σ∆EL∆AZ

+
+

+
+

Σ

∆EL

∆AZ

RF

(a) TILE-ASSEMBLY (b) BRICK-ASSEMBLY

UNIT

CELL

DOWN

...

...

UP

Figure 22: (a) tile-assembled resonant RF MEMS
tunable impedance surface, (b) brick-assembled ultra
wideband RF MEMS reflectarray, (inset) differential

RF MEMS slotline TTD reflection phase shifter.
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� Principle of operation: Brick-assembled
reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)
phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8–14].

� Advantages:

– Bandwidth: TTD-capable

– Beam pointing error (3b < P̃ < 4b)

– Beam steering controller on the backside

– Monopulse-capable

– Polarimetric

� Disadvantages:

– EIRP × Gr/T : Lower than for a tunable
impedance surface, higher than for a lens

– Feed blocking, protrusion (Cassegrain)

– Size and weight (brick assembly)

– Spill-over loss (Tx) and noise (Rx)

Figure 23: Artist impression of an RF MEMS reflec-
tarray brick with 3:1 bandwidth.
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� Principle of operation: Brick-assembled
reflectarrays based on antennas and (TTD) phase
shifters capture the unbounded wave, and (TTD)
phase shift, reflect, (TTD) phase shift, and
reradiate the guided wave [8–14].

� Advantages:

– Bandwidth: TTD-capable

– Beam pointing error (3b < P̃ < 4b)

– Beam steering controller on the backside

– Monopulse-capable

– Polarimetric

� Disadvantages:

– EIRP × Gr/T : Lower than for a tunable
impedance surface, higher than for a lens

– Feed blocking, protrusion (Cassegrain)

– Size and weight (brick assembly)

– Spill-over loss (Tx) and noise (Rx)

Figure 24: Artist impression of a differential slot-
line TTD reflection phase shifter based on Radant
RMSW200 SPST RF MEMS switches.
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� Principle of operation: It is a cascade of a single
pole N throw (SPNT) switch and a beamformer
(beamforming matrix or lens or reflector based
focal plane scanner [1–4]).

� Advantages:

– Bandwidth: TTD-capable, if based on focal
plane scanner (parabolic reflector, Luneburg
or Rotman lens)

� Disadvantages:

– Bandwidth: coupler limited, if based on
beamforming matrix (Blass, Butler, Nolen)

– Beam pointing error: high, B beam positions
versus 22P−1 beam positions for (TTD)
phase shifter based ESA

– EIRP × Gr/T : PT limited by linearity and
cold-switched power handling of SPNT
switch. G lowered by insertion loss (IL) of
SPNT switch and beamformer.

– Field of view: related to f/D (IL, size)

– Not monopulse-capable

d

ROTMAN
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(3 FOCAL

POINTS)

RF MEMS

SP4T SWITCH

BEAM PORTS (B) ARRAY PORTS (A)

PARABOLIC

REFLECTOR
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f
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d > λ0/2

(b)
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Figure 25: Switched beamformers based on an RF
MEMS single pole 4 throw (SP4T) switch and a focal
plane scanner: (a) the Rotman lens based focal plane
scanner, (b) parabolic reflector based focal plane scan-
ner.
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� Principle of operation: It is a cascade of a single
pole N throw (SPNT) switch and a beamformer
(beamforming matrix or lens or reflector based
focal plane scanner [1–4]).

� Advantages:

– Bandwidth: TTD-capable, if based on focal
plane scanner (parabolic reflector, Luneburg
or Rotman lens)

� Disadvantages:

– Bandwidth: coupler limited, if based on
beamforming matrix (Blass, Butler, Nolen)

– Beam pointing error: high, B beam positions
versus 22P−1 beam positions for (TTD)
phase shifter based ESA

– EIRP × Gr/T : PT limited by linearity and
cold-switched power handling of SPNT
switch. G lowered by insertion loss (IL) of
SPNT switch and beamformer.

– Field of view: related to f/D (IL, size)

– Not monopulse-capable

Figure 26: KNIRTI’s Sorbtsiya H/I-band radar jam-
ming ECM pod for the Sukhoi 34 fighter aircraft fea-
tures a Luneburg lens based focal plane scanner.
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� Primary function: Protection of ESA against
adverse environmental conditions

� Secondary functions:

– Calibration [1]

– (Tunable) Frequency selective surface
(FSS) [2]

– Limiter

– (Reconfigurable) Polarization transformer [3]

– Shutter (RCS control) [4]

Figure 27: Radome [5] (Photo of APAR radome,
Thales, Hengelo, The Netherlands)
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